The paradoxical survival of African Swine Fever by free-living wild boar

A molecular approach to understanding wildlife disease susceptibility

N.W.G. Barmentlo, J. Ellers, T.J. Smyser, V. Brown, M. Bosse

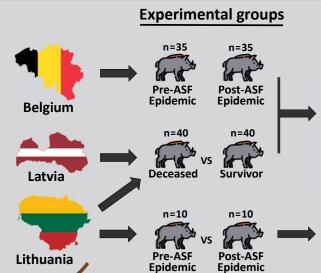
Email address: n.w.g.Barmentlo@vu.nl

African Swine Fever (ASF)

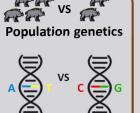
- Arrived in Georgia in 2007
- ASF 100% lethal to pig and wild boar?
- Reports of surviving wild boar

Aim: Identify factors affecting survival of ASF by free-living wild boar

What causes variance in survivability to a disease?


- 1. Condition animal
 - Genetic load
 - Prior and current pathogens
 - Commensal microbes
- 2. Evolutionary immune strategy
 - Species and population:
 - Innate vs adaptive responses Or short-term vs long-term (Changes on genetic and expressional level)
- 3. Environmental conditions
 - Local climate
 - · Food availability

Expectations


- High baseline investment in innate responses;
 - ASF is adept at avoiding the activation of the initial responses
- Observed as: differences in gene expression and genetic variants of innate immune genes

Proposed Experimental Set-up

Molecular Analyses

GWAS

Belgium, Latvia,

Belgium,

Lithuania

 Genetic load, Bottleneck, drift, inbreeding

Assessed Factors

• Genes under selection for ASF survival

- Influence prior microbe interaction
- Regulation immune pathways

Succeeding experiments

Belgium: Latvia:

Lithuania:

Eradicated ASF

ASF since 2014

ASF since 2014

Compare immune baseline

Throat Microbiome: Species + Function

Afflicted countries (Europe) Naïve countries (invasive range) Goal: Ability to predict naïve population susceptibility